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Abstract— In this paper, some Computational Fluid Dynamics (CFD) techniques have been used to compute the variations in different 
parameters like pressure, density etc. by solving the Euler Equations for shock tube problem. The governing equations are discretized on a 
Finite Volume framework. Van Leer’s first, second and third order flux vector splitting method have been used to compute the inviscid flux 
terms. For the second order computations, MUSCL approach has been adopted. The effect of the order of the scheme on the accuracy of 
the solution is studied. Also for higher order schemes the effect of the limiter type on the performance of the scheme are investigated. The 
performance of the scheme is judged by its ability to resolve shocks, expansion fans and contact discontinuities present in the shock tube 
problem. Two types of limiters namely Minmod limiter and Van Albada limiter are used for the implementation of MUSCL scheme. Van 
Albada limiter is found to be more robust and accurate as compared to Minmod limiter. 

Index Terms - Compressible Flow, Inviscid flow, Shock waves, Flux Vector Splitting, MUSCL scheme and Conservation laws  

——————————      —————————— 

1 INTRODUCTION                                                                     

  The flow of an inviscid gas is governed by the Euler 
Equations. Additionally the equation of state relates the differ-
ent properties by some functional relationship. In the present 
work, the flow through a shock tube problem is analyzed 

The time evolution of this problem can be described 
by solving the Euler equations which leads to three character-
istics, describing the propagation speed of the various regions 
of the system namely the rarefaction wave, the contact discon-
tinuity and the shock discontinuity. If this is solved numerical-
ly, one can test against the analytical solution, and get infor-
mation how well a code captures and resolves shocks and con-
tact discontinuities and reproduce the correct density profile 
of the rarefaction wave. 

A compressible flow-field [3] is often characterized by 
the presence of discontinuities in the form of shock waves, 
contact discontinuities and other types of waves and wave 
interactions like expansion waves, shock-expansion interac-
tion, shock-shock interaction etc. Over years, different numeri-
cal schemes are being developed for more accurate and effi-
cient capturing of shocks. As the derivatives of the flow varia-
bles become undefined at discontinuities, so in the numerical 
schemes for capturing shocks, some numerical dissipation or 
artificial dissipation was intentionally induced so as to convert 
these regions of discontinuities into zones of very sharp gradi-
ents, thereby allowing obtaining of weak solutions of the gov-
erning solutions.  

The first notable approach to numerical shock captur-
ing through numerical dissipation was presented by von 
Neumann et.al. A numerical dissipation [4] term was intro-
duced which assumed relatively high values near shocks and 
became small in smooth regions of flow. Followed by this 
many researchers continued work in characterization and de-
signing of numerical dissipation.  

Sod [6] provided a survey of different numerical 
schemes for solving system of hyperbolic conservation laws. 
Many different numerical schemes were tested on a 1-D shock 
tube problem and the results were analyzed.  

Knight [4] focuses on the unsteady one dimensional 
Euler equations, which form the basis for development of nu-
merical algorithms in compressible fluid mechanics. A higher 
order reconstruction technique such as the MUSCL is exten-
sively discussed. The MUSCL approach was adopted in the 
numerical schemes. 

 Roe [9] presented his well-known scheme which 
started an era of so-called Flux-Difference-Splitting (FDS) 
Schemes for inviscid compressible flows. In Roe’s scheme, the 
numerical dissipation was found suitable for capturing shocks 
and provided relatively lesser numerical dissipation in the 
smooth regions of flow. However, computational complexity 
was more. The quests for simpler schemes lead to the Flux 
Vector Splitting (FVS) Schemes. Stager and Warming [10] van 
Leer’s flux vector splitting scheme was a noticeable step in the 
era of Flux Vector Splitting Schemes. Although computational-
ly simpler as compared to the FDS, FVS had the inherent prob-
lem of more smearing of shocks and contact discontinuities 
due to higher numerical dissipation. Also, in viscous flows, 
this excessive numerical dissipation causes diffusion of 
boundary layers. Van Leer again suggested that better results 
could be obtained by blending the positive features of FVS and 
FDS. 

Jaisankar [12, 13] showed in his paper that diffusion 
regulation parameter adjusts itself in different regimes of the 
flow and leads to the exact capturing of steady contact discon-
tinuities which are aligned with the grid lines. This diffusion 
regulator parameter reduces numerical dissipation, is very  
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simple and can be easily incorporated in any Eulerian solver. 
By coupling such parameters with a simple numerical method 
like Van Leer’s Flux Vector Splitting Method, an accurate yet 
simple numerical method is developed for the numerical sim-
ulation of inviscid compressible flows.  

Kapahi [15] described a three dimensional Eulerian 
and Lagrangian method for the modelling and simulation of 
high speed multi material dynamics. The approach showed 
capabilities to resolve and capture non linear waves such as 
shock waves, rarefaction waves and contact discontinuities in 
complex geometries. 

It is seen that there is a continuous effort in the re-
search field of CFD to develop more robust and efficient nu-
merical schemes for compressible flow computations. If nu-
merical scheme can predict approximate results as that of ana-
lytical solutions we can get information how well a code cap-
tures and resolves shocks and contact discontinuities and re-
produce the correct density profile of the rarefaction wave and 
this can be used in solving complex fluid problems which are 
difficult or impossible to solve analytically. In this paper, some 
Computational Fluid Dynamics (CFD) techniques [1] have 
been used to compute the variations in different parameters 
like pressure, density etc. by solving the Euler Equations for 
the shock tube problem. The governing equations are discre-
tized on a Finite Volume framework [2]. Van Leer’s [7] first 

order and second order flux vector splitting method has been 
used to compute the inviscid flux terms. It is planned to study 
the effect of the order of the scheme on the accuracy of the 
solution. For higher order schemes the effect of the limiter 
type on the performance of the scheme shall also be highlight-
ed. The performance of the scheme shall be judged by its abil-
ity to resolve shocks, expansion fans and contact discontinui-
ties present in the shock tube problem.  

2 GOVERNING EQUATIONS 
2.1 Reynolds Transport Theorem: 
The Reynolds Transport Theorem (RTT) for any intensive 
property  φ  is given by, 

              (1) 

 
                   (1)           
 

 
2.2 Continuity Equation: 
For the continuity equation,  

 
                                                                   

 
Also, from the definition of system, when 1φ =  , then 

 
       (2) 

 
Hence, the continuity equation, which is nothing but conserva-
tion of mass, becomes,        
 

                  (3) 
 

The differential form of the continuity equation, which may 
also be expressed as, 

 
             (4) 
 

 
2.3 Momentum Equation: 
The Momentum Equation is based upon Newton’s Second 
Law of Motion, i.e., 

       
 (6)

 
               (5) 

 
Hence for Momentum Equation,    
  

                       
 

For Euler Equations for a gas, the external forces acting are 
pressure force alone, since Euler Equation is for an inviscid 
fluid and for gases the body forces in the form of gravity are 
negligible. 
Hence, 

 
 

 
                      (6) 
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 Nomenclature 

ρ = Density of the Fluid. 
p = Pressure of the fluid. 

T = Temperature of the fluid.  
R = Universal gas constant . 
u, v, w =Velocities along  x, y, z directions. 
t = Time. 
a = Velocity of Sound. 
γ = Adiabatic index. 

me = Energy per unit mass. 

φ = Any particular property such as mass, momentum, 
energy per unit mass. 
U = Vector of Conserved variable. 
G = Flux Vector.   
A = Flux Jacobian. 
H =Enthalpy. 

pC =Specific heat. 

sU =Velocity of the Normal Shock. 

pU = Velocity of the Contact Surface. 

M = Mach number. 
V = Volume of the Cell. IJSER
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Simplified to differential forms of the momentum equation 
along three mutually perpendicular directions x, y and z as 
follows, 
x Momentum Equation: 

 
               (7)   

  
 

 
y Momentum Equation: 

 
                (8) 

 
z Momentum Equation: 

 
            (9) 

 
These are the differential form of the Momentum Equation for 
an inviscid compressible fluid.  
 
2.4 Energy Equation: 
The Energy Equation is based upon the first law of thermody-
namics, which states that the total increase in Energy of a sys-
tem is the sum of heat transfer into the system and the work 
done  of  the system, i.e., 

                                                (10) 

 

Hence for the energy equation, for an inviscid compressible 
fluid,                                                                    

      (12) 
                         
        

  (13)  

       (11) 

is the differential form of the Energy Equation for an adiabatic 
inviscid compressible flow.  
 
2.5 Euler Equations for One-Dimensional Adiabatic Flow 
The Equations in the above section can be generally written as 
Euler Equation with the form, 
 

                      (12) 
 

 
Where, 

 
 
 
 
 
 

 
 
For one dimensional flow, Euler Equation takes the form, 

 
                    (13) 

Where,  
 
U (Vector of conserved variable) =  
 
 
G (Flux vector) = 
 
 
Also, 

 
               (14) 

 
Where ρ is the density of the fluid 
           u is the velocity of the fluid 

           me is the energy per unit mass of the fluid 

3 NUMERICAL SCHEMES 
3.1 Flux Vector Splitting (FVS) Schemes: 
The basic concept of flux vector splitting method is to decom-
pose the flux at the interface of one left and one right state, 

1
2

G into two parts; 

 
                           (15) 

 
G+ and G- represents the contribution of the flux associated 
with the waves that moves from left to right and right to left 
respectively across the cell interface at half.  

 

Fig.1. Flux splitting at the cell interface 
There are many FVS schemes like Steger and Warming meth-
od [10], Van Leer algorithm etc. In our project, we have used 
the Van Leer’s method which is elaborately discussed below. 
 
3.1.1: Van Leer’s Flux Vector Splitting:  
Van Leer [8] provided the splitting by splitting the terms con-
taining Mach Number in the flux Vector. The flux Vector can 
be expressed as function of Mach Number as: 
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Van Leer Split the Mach Number as, 
 

               (17) 
Where,   
 
 
 

 
 
 
 
 
   
The split fluxes are obtained in the following way: 
 
 
  

 
, 1for M <                 (18)

 

 
 
 
 
And, 
 
 
 

              (19) 
 

 
 
 

Otherwise, ,  0G G G+ −= = for 1M ≥  
And, 0,  G G G+ −= =  for 1M ≤ −  
 
Van Leer further suggested that conventional flux vector split-
ting had certain limitations. One dissatisfaction with flux vec-
tor splitting is highly dissipative property of FVS schemes, 
which leads to diffused boundary layers in Navier-Stokes 
codes, diffused contact discontinuities and slip surfaces. This 
is in contrast to FDS such as Roe’s Scheme. As a result, the at-
tached boundary layers to be resolved by Navier Stokes codes 
using flux vector splitting get artificially broadened, and adia-
batic wall temperature becomes inaccurate. 

4 RECONSTRUCTION AND USE OF LIMITERS 
4.1 Introduction: 
The semi-discrete form of the Euler equations is 
 

 
        (20) 

Where ( )iU t the cell is averaged vector of dependent varia-

bles, 

          (21) 
 

1
2i

G
±

= is the spatial flux quadrature 

 
             (22)

  
And 1

2iA y± = ∆ is the surface area of the face at 1
2ix ± . For a 

one-dimensional flow,  
                                  
 

Where G⊥ is given by; 
 

 
 

           (23) 
 

 
 
 
 

The discretization of the domain and introduction of the 
volumeaveraged vector ( )iU t  result in a loss of information 

regarding ( , )U x t . Consider, for example, the periodic func-
tion ( ) sinU x x= for 0 ≤ x ≤ 2π. Assume ten cells are em-

ployed. The exact function ( )U x  and cell averaged values iU  
are shown in Fig. 4.1. Within a given cell, the cell averaged 
value is only an approximation of the exact functionU . Of  
course, the approximation improves as the size of the cell is 
reduced. 
 

Fig.2. Flux splitting at the cell interface 
 
The time evolution of Ui requires the flues, Gi±½ which, in 

turn, must be computed using the Ui in the vicinity of xi±½. 
Within each cell i, a local approximate reconstruction Ui(x) of 
the exact function U(x) can be formed to compute the fluxes. 
Note, however, that discontinuity may exist at each cell inter-
face, i.e., Ui(xi+½)≠U i+1(xi+½). The algorithm for the fluxes 
Gi±½ must take this discontinuous behavior into considera-
tion. The simplest reconstruction is, Ui(x) = Ui which is first-
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order accurate. This methodleads to excessive numerical diffu-
sion, however, and is generally not acceptable. We therefore 
seek reconstruction methods of higher order accuracy. Three 
methods are presented in the following sections. Ui is the cell 
averaged values in cell i and is therefore a constant. Ui(x) is a 
function defined in cell i that is in general not a constant. Ui(x) 
is constructed to provide a closer approximation to U(x) than 
is afforded by Ui.   
 
4.2 Monotonic Upstream-centered Scheme for Conservation 
Laws (MUSCL): 
. 
Table 1: Reconstruction Table 
 
Κ Order Definition 
1 2nd Centered 
1

3  3rd Upwind-biased 

0 2nd Upwind-biased 
-1 2nd Upwind 
 
The MUSCL scheme is: 

 
     (24) 

 
     (25) 

 
 

For κ =1 
 

           (26) 
 

For κ =
1
3

 with  

 
 

         (27) 
 
 

           (28) 
 

 
 

For κ =
1
3

 with  

 
 

   (29) 
 
 

 
         (30) 

 

 

For κ =
1
3

 with  

 
 
        (31) 

 
 
 

      (32) 
 

For κ =
1
3

 with  

 
 

       (33) 
 

 
 

 
     (34) 

 
 
 

For κ =0 and -1 
 
          (35) 

 
 

                   (36) 
 

Where 
 

 

 
 

4.3 Use of Limiter: 
Second and higher order upwind spatial discretization’s [5] 
require the use of so called limiters or limiter functions in order 
to prevent the generation of oscillations and spurious solu-
tions in regions of high gradients (e.g., at shocks).The purpose 
of a limiter is to reduce the slopes (i.e., 1i iU U

x
+ −
∆

) used to inter-

polate a flow variable to the face of a control volume, in order 
toconstrain the solution variations. At strong discontinuities, 
the limiter has toreduce slopes to zero to prevent the genera-
tion of a new extremum.The last requirement to be imposed 
on a limiteris quite obvious - the original unlimited discretiza-
tion has to be obtained in smooth flow regions, in order to 
keep the amount of numerical dissipation aslow as possible.  
In our project work the following limiter functions have been 
used for the second order MUSCL scheme. 
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• Minmod Limiter Function. 
• Van-Albada Limiter Function. 

 
Minmod Limiter Function: 
 

                          (37) 
 

This limiter is used for κ=-1, i.e. an upwind scheme 
 
Van-Albada Limiter Function: 
This limiter is used for forκ=0, i.e. an upwind-biased scheme. 
The expressions for the left and right states are: 

 
 

                (38) 
 

 
The function δ is formally identical for both the states.It 
reads 

 
                (39) 

 
The coefficient a and b are defined for the left and right states 
as 

                                  
 

 (40) 

5 PROBLEM STATEMENT 
5.1 Sod’s Shock tube problem: 
The Shock Tube Problem [6] is a classical benchmark problem 
for numerical algorithms involving compressible flow, where 
study of generation and propagation of expansion and shock 
waves are to be understood. Our problem consists of a tube of 
10 meters in length which is filled with air and separated by a 
diaphragm which represents the interface between two cells 
contain air at different pressure, density and velocity located 
at the middle of the tube. The state of the air on the left side of 
the diaphragm is different from that on the right side. This 
results in a discontinuous initial distribution.  

Fig.3. Driver and Driven Sections of a Shock Tube 
 
 
 
 

Fig.4. Schematic Layout of Shock Tube 
 
In this paper, the distribution is chosen with the following 
initial condition:-  
Length of the tube (L) = 10 m 
Diaphragm Location = 5 m 
Pressure on the driving side ( 4P ) =100000 Pa 

Pressure on the driven side ( 1P ) =10000 Pa 

Density on the driving side ( 4ρ ) = 1 3
Kg

m  

Density on the driven side ( 1ρ ) = 0.125 3
Kg

m  

Fluid velocity at the driving side ( 4u ) = 0 m
s  

Fluid velocity at the driven side ( 1u ) = 0 m
s  

given for left and right side of tube. The isentropic coefficient 
has been γ = 1.4. At time t=0 seconds, the diaphragm rupture 
and the air propagates in the tube. The flow parameters are 
recorded upto time t=0.0061 sec. According to Euler’s equa-
tions during this propagation two discontinuities called shock 
and contact discontinuity arises. We discuss the impact of this 
result on the development of high-resolution shock-capturing 
numerical codes to solve the equations of relativistic hydrody-
namics. 

6 RESULTS 
6.1 Analytical: 
The solution of the Riemann problem is found by solving an 
implicit algebraic equation which gives the pressure in the 
intermediate states. The solution presented here contains as a 
particular case the special relativistic shock-tube problem in 
which the gas is initially at rest. The above initial conditions 
are taken for solving the Sod’s shock tube problem analytically. 
So, from the ideal gas equation,  
 

1 1 1P =ρ RT             (41) 

1T =278.7456 K⇒  

4 4 4P RTρ=             (42) 
4T =348.432 K⇒          
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a=γRT                              (43)      
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m
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a =334.664 
a =374.166 

⇒
⇒  
Now,  
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Across the expansion fan, the flow is isentropic, so  
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3
Kg
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Speed of shock wave,  
 

  
Again,           (47) 

3
3

3

PT = =247.735K
Rρ

  

3 3 315.499a =γRT m
s=        (48) 

Similarly, 
2T =397.71 K  

m
s2 399.749a =   

 
Velocity of the contact surface  

 
 
  

         (49) 
p 3 22.209The velocity of the tail of the expans =ion fan u -a m

s−=  
Within the expansion fan, the flow parameters at t=0.0061sec, 

Location of the head of the expansion fan, 4 2.2824x=-a t =-  m×  

Location of the shock wave sU 3.38= t =  m×  

6.2 Graphical: 

Following are the graphical representations of analytical calcu-
lations for different parameters involved with the Riemaan 
Shock Tube problem. The parameters plotted against length of 
the tube are pressure, density, velocity, temperature and Mach 

number. 
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(d) 

 

 
(e) 

 
Fig.5. Variation of (a) Density, (b) Pressure, (c) Velocity, (d) 

Temperature and (e)Mach No. along the length of the Shock 
Tube 

 
 
Here A and B represents the head and tail of expansion wave 
respectively. B to E represents the contact surface where B to C 
represents the left of the contact surface, point C o D repre-
sents the diffusive nature of the diaphragm and D to E repre-
sents the right of the contact surface. Point E to F represents 
the shock discontinuity. From the above figures, the variation 
of the conserved variables (density, pressure, velocity, temper-
ature and Mach number) can be clearly seen. 
 
 
 
 
 
 
 

6.3 Comparison of Van leer flux Splitting Scheme for differ-
ent orders: 
Van Leer’s first, second and third order schemes are used to 
find the solution for the Riemann Shock tube problem. For 
higher order schemes, limiter functions like the Minmod and 
Van Albada are used to prevent the generation of oscillations 
and spurious solutions in regions of high gradients. A com-
parative study is also carried out between the results obtained 
from all the schemes and alongwith the analytical solution. 
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(e) 

 
Fig.6. Comparison for (a) Pressure, (b) Density, (c) Velocity, 
(d) Mach No. and (e) Temperature along the length of the 

Shock Tube for Analytical, 1st order, 2nd order (Minmod), 2nd 
order (Van Albada) and 3rd order computations 

 
Head of expansion wave at x = 2.72 m 

Tail of expansion wave at x = 4.86 m 

Contact Surface at x = 6.8 m 
 

 
Shock wave at x = 8.38 m 
 

 
 
There are many effects for using the higher order schemes as 
they are very prone to in stability and oscillations in the vicini-
ty of discontinuity. This effect is very well rectified by the use 
of limiters. Moreover, the higher order schemes give far better 
and accurate solutions than lower order schemes. As the order 
of the scheme is increased, the numerical dissipation is re-
duced. From the graphs seen above, it is seen that the third 
order solution is in better agreement with the analytical solu-
tion than the second order solution which in turn is better than 
the first order solution. The highly dissipative nature of first 
order solution is quite evident in the smeared shock and con-
tact discontinuities.  
For higher order schemes, reconstruction methods are used to 
increase the accuracy of the solution obtained.  
 

Conclusion 

This work is carried out using basic schemes for numerical 
solution of compressible flow problems so that in future more 
challenging problems in CFD can be encountered. The various 
schemes for numerical solution of One Dimensional Flow is 
studied. The Van leer Flux Vector Scheme is used for numeri-
cal simulation of the Sod’s Shock Tube. For the purpose of 
numerical simulation, a C code is developed. 
Based on our study following conclusions can be made: 
1) The results of the Van Leer’s third order solution for Sod’s 

shock tube problem are found in excellent agreement with 
the analytical solution. Hence the Code is validated. 

2) In Sod’s shock tube problem, the accuracy of the third or-
der solution is much better than that of first and second 
order solutions. This is quite evident at the smeared shock 
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and contact discontinuities where the dissipative nature of 
the first and second order solution is clearly seen. 

3) Following the trend the results obtained from higher order 
methods are expected to be more accurate than the preced-
ing orders. 

4) The computer simulation is found to be an economic ap-
proach as compared to the experimental approach. Fur-
thermore, it is free of some of the constraints imposed on 
the experimental method for obtaining information upon 
which to base a design such as the difficulty faced in phys-
ical simulation of the operating environment. The only dif-
ficulty in computational approach lies in mathematically 
modeling the complex physical phenomena. 
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